

Environmental Tracers in Hydrogeology: Powerful yet Underutilized Tools

Overview and Case Study

Water Tech 2014, Banff April 10, 2014

Stephan Klump, PhD

Outline

- Environmental Tracers in Hydrogeology
- Dating Young Groundwater
 - Tritium (³H)
 - ${}^{3}H/{}^{3}He$
 - CFCs, SF₆
- Dating Old Groundwater
 - Radiocarbon (¹⁴C)
 - Helium-4 (⁴He)
- Case Study
 - Geothermal Exploration in Yukon

Environmental Tracers

What are environmental tracers?

 Chemically inert trace substances (e.g., transient or radioactive) which are present in the water cycle and allow physical processes to be studied in aquatic systems

Environmental Tracers in Hydrogeology

- Stable Isotopes: Oxygen-18 (¹⁸O), Deuterium(²H)
- Radioisotopes: ³H, ¹⁴C, ⁸⁵Kr, ⁸¹Kr, ³⁷Ar, ³⁹Ar, ²²²Rn
- Noble Gases: He, Ne, Ar, Kr, Xe
- Transient Atmospheric Trace Gases: CFCs (CFC-11, CFC-12, CFC-113), SF₆
- Others...

Dating Young Groundwater

- Young Groundwater: mean residence time less than about 50 to 60 years
- Potential application of dating methods:
 - Aquifer vulnerability studies
 - Wellhead and aquifer protection plans
 - Contaminated site assessments
 - Geothermal assessments (geothermometry)
 - Quantification of groundwater mixing
 - Calibration/verification of numerical models
 - Determination of recharge rate
 - Many others...
- Several available methods; relatively inexpensive

Tritium (³H)

 ${}^{1}\text{H}_{2}\text{O}$

 $^3H^1HO$

Dating Groundwater Using Tritium

- Sample contains tritium
 residence time <60 years
- Sample does not contain any tritium (detection limit!)
 residence time >60 years
- "Classic" dating method: comparison of measured tritium concentration with decay-corrected local atmospheric input function (often non-unique)

Tritium/Helium-3 Method

Chlorofluorocarbons (CFCs) and Sulfur Hexafluoride (SF₆)

- Transient, atmospheric trace gases
- Man-made (small amount of natural SF₆)
- Inert gases
- CFCs are "ozone killers"
- SF₆ is the most potent greenhouse gas and has a very long atmospheric lifetime

Atmospheric Input Function

Groundwater dating by CFCs, SF₆

Sampling

Analysis

"Age" calculation

Dating Old Groundwater

- Radiocarbon (¹⁴C)
 - Dating range: ~1,000 to 45,000 years
 - AMS technology has reduced required sample size to about 1 L (depending on HCO₃⁻ concentration)
- Helium-4 (⁴He)
 - Produced by the decay of U and Th
 - Accumulates in groundwater as a function of residence time on timescales of hundreds to thousands of years, and U/Th concentration in aquifer matrix
 - Usually use as a qualitative dating tool because ⁴He accumulation rate is unknown and difficult to determine

Helium Reservoirs

- Helium isotope ratio is characteristic for helium source
- High isotope ratios often indicate deep fluid circulation
- Use as geothermal exploration tool?

Case Study

Geothermal Exploration, Yukon

Ground Reconnaissance

- Preliminary geological mapping
- Documentation of surface features
- Water sampling and flow estimates
- Temperature and other field parameter measurements

Thermal Water Analysis

- Field: pH, temperature, electrical conductivity
- Lab: alkalinity (total, HCO₃, CO₃, OH), hardness, F, Cl, NO₂, NO₃, SO₄, dissolved metals
- Environmental isotopes: ¹⁸O, ²H, ³H, ¹⁴C, He-Xe

Helium Isotopes: Thermal Springs in Yukon

Geothermometer

- Estimate of subsurface temperature
- Assumptions:
 - Dissolved ions in equilibrium with reservoir rocks
 - Chemical equilibrium is mainly temperaturecontrolled
 - Fast conduit from reservoir to surface without time for chemical re-equilibration
- Most common geothermometer methods are based on Na-K-Ca ion ratios and Si concentration

SiO₂-Geothermometer Results

Water Dating with ³H and ¹⁴C

- Tritium concentration was below detection limit (<0.8 TU)
 - Residence time >60 years
 - No significant admixture of young, shallow groundwater
- Radiocarbon concentration was very low (2.24 pmc)
 - Conventional radiocarbon age is ~30,000 years
 - Large residence time indicates long, deep flow path of thermal water
 - No significant admixture of young, shallow groundwater
- Thermal water has not been significantly diluted with shallow, cold groundwater
- Geothermometer temperatures are probably representative of subsurface reservoir temperatures

Summary and Conclusions

- Groundwater dating can provide significant information regarding the dynamics of groundwater systems (residence time, recharge rate, flow regime, etc.)
- This information can be useful for a large range of hydrogeological projects (aquifer vulnerability, contaminated sites, groundwater resource assessments, sustainability studies, geothermal assessments, etc.)
- Methods are widely underutilized in practical hydrogeology (high costs, unavailability of labs, long sample turnaround, lack of knowledge and experience)
- Opportunity for innovation...

THANKS FOR YOUR ATTENTION

Questions?

